pyemma.thermo.MBAR¶
-
class
pyemma.thermo.MBAR(maxiter=10000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', direct_space=False)¶ Multi-state Bennet Acceptance Ratio Method
Parameters: - maxiter (int, optional, default=10000) – The maximum number of self-consistent iterations before the estimator exits unsuccessfully.
- maxerr (float, optional, default=1.0E-15) – Convergence criterion based on the maximal free energy change in a self-consistent iteration step.
- save_convergence_info (int, optional, default=0) – Every save_convergence_info iteration steps, store the actual increment and the actual loglikelihood; 0 means no storage.
- dt_traj (str, optional, default='1 step') –
Description of the physical time corresponding to the lag. May be used by analysis algorithms such as plotting tools to pretty-print the axes. By default ‘1 step’, i.e. there is no physical time unit. Specify by a number, whitespace and unit. Permitted units are (* is an arbitrary string):
‘fs’, ‘femtosecond*’‘ps’, ‘picosecond*’‘ns’, ‘nanosecond*’‘us’, ‘microsecond*’‘ms’, ‘millisecond*’‘s’, ‘second*’ - stride (int, optional, default=1) – not used
Example
References
-
__init__(maxiter=10000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', direct_space=False)¶
Methods
__init__([maxiter, maxerr, ...])estimate(X)param X: Simulation trajectories. ttrajs contain the indices of the thermodynamic state, dtrajs expectation(a)Equilibrium expectation value of a given observable. fit(X)Estimates parameters - for compatibility with sklearn. get_model_params([deep])Get parameters for this model. get_params([deep])Get parameters for this estimator. meval(f, \*args, \*\*kw)Evaluates the given function call for all models pointwise_free_energies([therm_state])register_progress_callback(call_back[, stage])Registers the progress reporter. set_model_params([models, f_therm, pi, f, label])set_params(\*\*params)Set the parameters of this estimator. update_model_params(\*\*params)Update given model parameter if they are set to specific values Attributes
active_setf_full_stateThe free energies of discrete states free_energiesfree_energies_full_stateloggerThe logger for this class instance modelThe model estimated by this Estimator model_active_setmsm_active_setnameThe name of this instance nstatesNumber of active states on which all computations and estimations are done nstates_fullpi_full_stateshow_progresswhether to show the progress of heavy calculations on this object. stationary_distributionThe stationary distribution stationary_distribution_full_stateunbiased_state-
estimate(X)¶ Parameters: X (tuple of (ttrajs, dtrajs, btrajs)) – Simulation trajectories. ttrajs contain the indices of the thermodynamic state, dtrajs contains the indices of the configurational states and btrajs contain the biases.
- ttrajs : list of numpy.ndarray(X_i, dtype=int)
- Every elements is a trajectory (time series). ttrajs[i][t] is the index of the thermodynamic state visited in trajectory i at time step t.
- dtrajs : list of numpy.ndarray(X_i, dtype=int)
- dtrajs[i][t] is the index of the configurational state (Markov state) visited in trajectory i at time step t.
- btrajs : list of numpy.ndarray((X_i, T), dtype=numpy.float64)
- For every simulation frame seen in trajectory i and time step t, btrajs[i][t,k] is the bias energy of that frame evaluated in the k’th thermodynamic state (i.e. at the k’th Umbrella/Hamiltonian/temperature).
-
expectation(a)¶ Equilibrium expectation value of a given observable. :param a: Observable vector :type a: (M,) ndarray
Returns: val – Equilibrium expectation value of the given observable Return type: float Notes
The equilibrium expectation value of an observable a is defined as follows
\[\mathbb{E}_{\mu}[a] = \sum_i \mu_i a_i\]\(\mu=(\mu_i)\) is the stationary vector of the transition matrix \(T\).
-
f_full_state¶ The free energies of discrete states
-
fit(X)¶ Estimates parameters - for compatibility with sklearn.
Parameters: X (object) – A reference to the data from which the model will be estimated Returns: estimator – The estimator (self) with estimated model. Return type: object
-
get_model_params(deep=True)¶ Get parameters for this model.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
get_params(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
logger¶ The logger for this class instance
-
meval(f, *args, **kw)¶ Evaluates the given function call for all models Returns the results of the calls in a list
-
model¶ The model estimated by this Estimator
-
name¶ The name of this instance
-
nstates¶ Number of active states on which all computations and estimations are done
-
register_progress_callback(call_back, stage=0)¶ Registers the progress reporter.
Parameters: - call_back (function) –
This function will be called with the following arguments:
- stage (int)
- instance of pyemma.utils.progressbar.ProgressBar
- optional *args and named keywords (**kw), for future changes
- stage (int, optional, default=0) – The stage you want the given call back function to be fired.
- call_back (function) –
-
set_params(**params)¶ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object. :returns: :rtype: self
-
show_progress¶ whether to show the progress of heavy calculations on this object.
-
stationary_distribution¶ The stationary distribution
-
update_model_params(**params)¶ Update given model parameter if they are set to specific values