pyemma.thermo.DTRAM¶
-
class
pyemma.thermo.DTRAM(bias_energies_full, lag, count_mode='sliding', connectivity='largest', maxiter=10000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', init=None, init_maxiter=10000, init_maxerr=1e-08)¶ Discrete Transition(-based) Reweighting Analysis Method
Parameters: - bias_energies_full (numpy.ndarray(shape=(num_therm_states, num_conf_states)) object) – bias_energies_full[j, i] is the bias energy in units of kT for each discrete state i at thermodynamic state j.
- lag (int) – Integer lag time at which transitions are counted.
- count_mode (str, optional, default='sliding') –
Mode to obtain count matrices from discrete trajectories. Should be one of: * ‘sliding’ : a trajectory of length T will have \(T-\tau\) counts at time indexes
\[(0 \rightarrow \tau), (1 \rightarrow \tau+1), ..., (T-\tau-1 \rightarrow T-1)\]- ‘sample’ : a trajectory of length T will have \(T/\tau\) counts at time indexes
- \[(0 \rightarrow \tau), (\tau \rightarrow 2 \tau), ..., ((T/\tau-1) \tau \rightarrow T)\]
Currently only ‘sliding’ is supported.
- connectivity (str, optional, default='largest') – Defines what should be considered a connected set in the joint space of conformations and thermodynamic ensembles. Currently only ‘largest’ is supported.
- maxiter (int, optional, default=10000) – The maximum number of self-consistent iterations before the estimator exits unsuccessfully.
- maxerr (float, optional, default=1.0E-15) – Convergence criterion based on the maximal free energy change in a self-consistent iteration step.
- save_convergence_info (int, optional, default=0) – Every save_convergence_info iteration steps, store the actual increment and the actual loglikelihood; 0 means no storage.
- dt_traj (str, optional, default='1 step') –
Description of the physical time corresponding to the lag. May be used by analysis algorithms such as plotting tools to pretty-print the axes. By default ‘1 step’, i.e. there is no physical time unit. Specify by a number, whitespace and unit. Permitted units are (* is an arbitrary string):
‘fs’, ‘femtosecond*’‘ps’, ‘picosecond*’‘ns’, ‘nanosecond*’‘us’, ‘microsecond*’‘ms’, ‘millisecond*’‘s’, ‘second*’ - init (str, optional, default=None) –
Use a specific initialization for self-consistent iteration:
None: use a hard-coded guess for free energies and Lagrangian multipliers‘wham’: perform a short WHAM estimate to initialize the free energies - init_maxiter (int, optional, default=10000) – The maximum number of self-consistent iterations during the initialization.
- init_maxerr (float, optional, default=1.0E-8) – Convergence criterion for the initialization.
Example
>>> from pyemma.thermo import DTRAM >>> import numpy as np >>> B = np.array([[0, 0],[0.5, 1.0]]) >>> dtram = DTRAM(B, 1) >>> ttrajs = [np.array([0,0,0,0,0,0,0,0,0,0]),np.array([1,1,1,1,1,1,1,1,1,1])] >>> dtrajs = [np.array([0,0,0,0,1,1,1,0,0,0]),np.array([0,1,0,1,0,1,1,0,0,1])] >>> dtram = dtram.estimate((ttrajs, dtrajs)) >>> dtram.log_likelihood() -9.805... >>> dtram.count_matrices array([[[5, 1], [1, 2]],
- [[1, 4],
- [3, 1]]], dtype=int32)
>>> dtram.stationary_distribution array([ 0.38..., 0.61...]) >>> dtram.meval('stationary_distribution') [array([ 0.38..., 0.61...]), array([ 0.50..., 0.49...])]
References
[1] Wu, H. et al 2014 Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states J. Chem. Phys. 141, 214106 -
__init__(bias_energies_full, lag, count_mode='sliding', connectivity='largest', maxiter=10000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', init=None, init_maxiter=10000, init_maxerr=1e-08)¶
Methods
__init__(bias_energies_full, lag[, ...])estimate(trajs)param X: Simulation trajectories. ttrajs contain the indices of the thermodynamic state and expectation(a)Equilibrium expectation value of a given observable. fit(X)Estimates parameters - for compatibility with sklearn. get_model_params([deep])Get parameters for this model. get_params([deep])Get parameters for this estimator. log_likelihood()meval(f, \*args, \*\*kw)Evaluates the given function call for all models register_progress_callback(call_back[, stage])Registers the progress reporter. set_model_params([models, f_therm, pi, f, label])set_params(\*\*params)Set the parameters of this estimator. update_model_params(\*\*params)Update given model parameter if they are set to specific values Attributes
active_setf_full_stateThe free energies of discrete states free_energiesfree_energies_full_stateloggerThe logger for this class instance modelThe model estimated by this Estimator model_active_setmsmmsm_active_setnameThe name of this instance nstatesNumber of active states on which all computations and estimations are done nstates_fullpi_full_stateshow_progresswhether to show the progress of heavy calculations on this object. stationary_distributionThe stationary distribution stationary_distribution_full_stateunbiased_state-
estimate(trajs)¶ Parameters: X (tuple of (ttrajs, dtrajs)) – Simulation trajectories. ttrajs contain the indices of the thermodynamic state and dtrajs contains the indices of the configurational states.
- ttrajs : list of numpy.ndarray(X_i, dtype=int)
- Every elements is a trajectory (time series). ttrajs[i][t] is the index of the thermodynamic state visited in trajectory i at time step t.
- dtrajs : list of numpy.ndarray(X_i, dtype=int)
- dtrajs[i][t] is the index of the configurational state (Markov state) visited in trajectory i at time step t.
-
expectation(a)¶ Equilibrium expectation value of a given observable. :param a: Observable vector :type a: (M,) ndarray
Returns: val – Equilibrium expectation value of the given observable Return type: float Notes
The equilibrium expectation value of an observable a is defined as follows
\[\mathbb{E}_{\mu}[a] = \sum_i \mu_i a_i\]\(\mu=(\mu_i)\) is the stationary vector of the transition matrix \(T\).
-
f_full_state¶ The free energies of discrete states
-
fit(X)¶ Estimates parameters - for compatibility with sklearn.
Parameters: X (object) – A reference to the data from which the model will be estimated Returns: estimator – The estimator (self) with estimated model. Return type: object
-
get_model_params(deep=True)¶ Get parameters for this model.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
get_params(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
logger¶ The logger for this class instance
-
meval(f, *args, **kw)¶ Evaluates the given function call for all models Returns the results of the calls in a list
-
model¶ The model estimated by this Estimator
-
name¶ The name of this instance
-
nstates¶ Number of active states on which all computations and estimations are done
-
register_progress_callback(call_back, stage=0)¶ Registers the progress reporter.
Parameters: - call_back (function) –
This function will be called with the following arguments:
- stage (int)
- instance of pyemma.utils.progressbar.ProgressBar
- optional *args and named keywords (**kw), for future changes
- stage (int, optional, default=0) – The stage you want the given call back function to be fired.
- call_back (function) –
-
set_params(**params)¶ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object. :returns: :rtype: self
-
show_progress¶ whether to show the progress of heavy calculations on this object.
-
stationary_distribution¶ The stationary distribution
-
update_model_params(**params)¶ Update given model parameter if they are set to specific values