pyemma.msm.ReactiveFlux¶
-
class
pyemma.msm.ReactiveFlux(*args, **kwargs)¶ A->B reactive flux from transition path theory (TPT)
This object describes a reactive flux, i.e. a network of fluxes from a set of source states A, to a set of sink states B, via a set of intermediate nodes. Every node has three properties: the stationary probability mu, the forward committor qplus and the backward committor qminus. Every pair of edges has the following properties: a flux, generally a net flux that has no unnecessary back-fluxes, and optionally a gross flux.
Flux objects can be used to compute transition pathways (and their weights) from A to B, the total flux, the total transition rate or mean first passage time, and they can be coarse-grained onto a set discretization of the node set.
Fluxes can be computed in EMMA using transition path theory - see
msmtools.tpt()- Parameters
A (array_like) – List of integer state labels for set A
B (array_like) – List of integer state labels for set B
flux ((n,n) ndarray or scipy sparse matrix) – effective or net flux of A->B pathways
mu ((n,) ndarray (optional)) – Stationary vector
qminus ((n,) ndarray (optional)) – Backward committor for A->B reaction
qplus ((n,) ndarray (optional)) – Forward committor for A-> B reaction
gross_flux ((n,n) ndarray or scipy sparse matrix) – gross flux of A->B pathways, if available
Notes
Reactive flux contains a flux network from educt states (A) to product states (B).
See also
msmtools.tpt-
__init__(A, B, flux, mu=None, qminus=None, qplus=None, gross_flux=None, dt_model='1 step')¶ Initialize self. See help(type(self)) for accurate signature.
Methods
_SerializableMixIn__interpolate(state, klass)__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__getstate__()__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__(A, B, flux[, mu, qminus, qplus, …])Initialize self.
__init_subclass__(*args, **kwargs)This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__my_getstate__()__my_setstate__(state)__ne__(value, /)Return self!=value.
__new__(cls, *args, **kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__setstate__(state)__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_compute_coarse_sets(user_sets)Computes the sets to coarse-grain the tpt flux to.
_get_classes_to_inspect()gets classes self derives from which 1.
_get_interpolation_map(cls)_get_model_param_names()Get parameter names for the model
_get_private_field(cls, name[, default])_get_serialize_fields(cls)_get_state_of_serializeable_fields(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version(cls[, require])_get_version_for_class_from_state(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_pathways_to_flux(paths, pathfluxes[, n])Sums up the flux from the pathways given
_set_state_from_serializeable_fields_and_state(…)set only fields from state, which are present in klass.__serialize_fields
coarse_grain(user_sets)Coarse-grains the flux onto user-defined sets.
get_model_params([deep])Get parameters for this model.
load(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
major_flux([fraction])Returns the main pathway part of the net flux comprising at most the requested fraction of the full flux.
pathways([fraction, maxiter])Decompose flux network into dominant reaction paths.
save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_model_params(A, B, flux, mu[, qminus, …])update_model_params(**params)Update given model parameter if they are set to specific values
Attributes
AReturns the set of reactant (source) states.
BReturns the set of product (target) states
IReturns the set of intermediate states
_ReactiveFlux__serialize_version_SerializableMixIn__serialize_fields_SerializableMixIn__serialize_modifications_map_SerializableMixIn__serialize_version__dict____doc____module____weakref__list of weak references to the object (if defined)
_save_data_producerbackward_committorReturns the backward committor probability
committorReturns the forward committor probability
dt_modelfluxReturns the effective or net flux
forward_committorReturns the forward committor probability
gross_fluxReturns the gross A–>B flux
mfptReturns the mean-first-passage-time (inverse rate) of A–>B transitions
muReturns the stationary distribution
net_fluxReturns the effective or net flux
nstatesReturns the number of states.
qminusReturns the backward committor probability
qplusReturns the forward committor probability
rateReturns the rate (inverse mfpt) of A–>B transitions
stationary_distributionReturns the stationary distribution
total_fluxReturns the total flux