pyemma.msm.ImpliedTimescales¶
-
class
pyemma.msm.ImpliedTimescales(*args, **kwargs)¶ -
__init__(estimator, lags=None, nits=None, n_jobs=None, show_progress=True, only_timescales=False)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
_Loggable__create_logger()_SerializableMixIn__interpolate(state, klass)__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__getstate__()__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__(estimator[, lags, nits, n_jobs, …])Initialize self.
__init_subclass__(*args, **kwargs)This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__my_getstate__()__my_setstate__(state)__ne__(value, /)Return self!=value.
__new__(cls, *args, **kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__setstate__(state)__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_check_estimated()_cleanup_logger(logger_id, logger_name)_estimate(dtrajs)_estimator_produces_samples()_get_classes_to_inspect()gets classes self derives from which 1.
_get_interpolation_map(cls)_get_param_names()Get parameter names for the estimator
_get_private_field(cls, name[, default])_get_serialize_fields(cls)_get_state_of_serializeable_fields(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version(cls[, require])_get_version_for_class_from_state(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_logger_is_active(level)@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)
_postprocess_results(models)_set_state_from_serializeable_fields_and_state(…)set only fields from state, which are present in klass.__serialize_fields
estimate(X, **params)- param X
discrete trajectories
fit(X[, y])Estimates parameters - for compatibility with sklearn.
get_params([deep])Get parameters for this estimator.
get_sample_conf([conf, process])Returns the confidence interval that contains alpha % of the sample data
get_sample_mean([process])Returns the sample means of implied timescales.
get_sample_std([process])Returns the standard error of implied timescales.
get_timescales([process])Returns the implied timescale estimates
load(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_params(**params)Set the parameters of this estimator.
Attributes
_Estimator__serialize_fields_ImpliedTimescales__serialize_fields_ImpliedTimescales__serialize_version_Loggable__ids_Loggable__refs_SerializableMixIn__serialize_fields_SerializableMixIn__serialize_modifications_map_SerializableMixIn__serialize_version__dict____doc____module____weakref__list of weak references to the object (if defined)
_estimated_loglevel_CRITICAL_loglevel_DEBUG_loglevel_ERROR_loglevel_INFO_loglevel_WARN_save_data_producerestimatorsReturns the estimators for all lagtimes.
fraction_of_framesReturns the fraction of frames used to compute the count matrix at each lag time.
lagsReturn the list of lag times for which timescales were computed.
lagtimesReturn the list of lag times for which timescales were computed.
loggerThe logger for this class instance
modelThe model estimated by this Estimator
modelsReturns the models for all lagtimes.
n_jobsReturns number of jobs/threads to use during assignment of data.
nameThe name of this instance
nitsReturn the number of timescales.
number_of_timescalesReturn the number of timescales.
sample_meanReturns the sample means of implied timescales.
sample_stdReturns the standard error of implied timescales.
samples_availableReturns True if samples are available and thus sample means, standard errors and confidence intervals can be obtained
timescalesReturns the implied timescale estimates
-