pyemma.msm.HMSM¶
-
class
pyemma.msm.HMSM(*args, **kwargs)¶ Hidden Markov model on discrete states.
- Parameters
hmm (
DiscreteHMM) – Hidden Markov Model
-
__init__(P, pobs, pi=None, dt_model='1 step')¶ - Parameters
Pcoarse (ndarray (m,m)) – coarse-grained or hidden transition matrix
Pobs (ndarray (m,n)) – observation probability matrix from hidden to observable discrete states
dt_model (str, optional, default='1 step') – time step of the model
Methods
_SerializableMixIn__interpolate(state, klass)__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(other)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__getstate__()__gt__(value, /)Return self>value.
__init__(P, pobs[, pi, dt_model])- param Pcoarse
coarse-grained or hidden transition matrix
__init_subclass__(*args, **kwargs)This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__my_getstate__()__my_setstate__(state)__ne__(value, /)Return self!=value.
__new__(cls, *args, **kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__setstate__(state)__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_assert_in_active(A)Checks if set A is within the active set
_assert_metastable()Tests if pcca object is available, or else raises a ValueError.
_committor_backward(P, A, B[, mu])_committor_forward(P, A, B)_compute_eigendecomposition(neig)Conducts the eigenvalue decomposition and stores k eigenvalues, left and right eigenvectors
_compute_eigenvalues(neig)Conducts the eigenvalue decomposition and stores k eigenvalues, left and right eigenvectors
_ensure_eigendecomposition([neig])Ensures that eigendecomposition has been performed with at least neig eigenpairs
_ensure_eigenvalues([neig])Ensures that at least neig eigenvalues have been computed
_get_classes_to_inspect()gets classes self derives from which 1.
_get_interpolation_map(cls)_get_model_param_names()Get parameter names for the model
_get_private_field(cls, name[, default])_get_serialize_fields(cls)_get_state_of_serializeable_fields(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version(cls[, require])_get_version_for_class_from_state(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_mfpt(P, A, B[, mu])_set_state_from_serializeable_fields_and_state(…)set only fields from state, which are present in klass.__serialize_fields
committor_backward(A, B)Backward committor from set A to set B
committor_forward(A, B)Forward committor (also known as p_fold or splitting probability) from set A to set B
correlation(a[, b, maxtime, k, ncv])Time-correlation for equilibrium experiment.
eigenvalues([k])Compute the transition matrix eigenvalues
eigenvectors_left([k])Compute the left transition matrix eigenvectors
eigenvectors_right([k])Compute the right transition matrix eigenvectors
expectation(a)Equilibrium expectation value of a given observable.
fingerprint_correlation(a[, b, k, ncv])Dynamical fingerprint for equilibrium time-correlation experiment.
fingerprint_relaxation(p0, a[, k, ncv])Dynamical fingerprint for perturbation/relaxation experiment.
get_model_params([deep])Get parameters for this model.
load(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
mfpt(A, B)Mean first passage times from set A to set B, in units of the input trajectory time step
pcca(m)Runs PCCA++ [1]_ to compute a metastable decomposition of MSM states
propagate(p0, k)Propagates the initial distribution p0 k times
relaxation(p0, a[, maxtime, k, ncv])Simulates a perturbation-relaxation experiment.
save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_model_params([P, pobs, pi, reversible, …])- param P
coarse-grained or hidden transition matrix
simulate(N[, start, stop, dt])Generates a realization of the Hidden Markov Model
submodel([states, obs])Returns a HMM with restricted state space
timescales([k])The relaxation timescales corresponding to the eigenvalues
transition_matrix_obs([k])Computes the transition matrix between observed states
update_model_params(**params)Update given model parameter if they are set to specific values
Attributes
PThe transition matrix on the active set.
_HMSM__serialize_version_MSM__serialize_fields_MSM__serialize_version_SerializableMixIn__serialize_fields_SerializableMixIn__serialize_modifications_map_SerializableMixIn__serialize_version__dict____doc____hash____module____weakref__list of weak references to the object (if defined)
_save_data_producerdt_modelDescription of the physical time corresponding to the lag.
eigenvectors_left_obseigenvectors_right_obsis_reversibleReturns whether the MSM is reversible
is_sparseReturns whether the MSM is sparse
lifetimesLifetimes of states of the hidden transition matrix
metastable_assignmentsComputes the assignment to metastable sets for observable states
metastable_distributionsReturns the output probability distributions. Identical to
metastable_membershipsComputes the memberships of observable states to metastable sets by
metastable_setsComputes the metastable sets of observable states within each
n_metastableNumber of states chosen for PCCA++ computation.
neignumber of eigenvalues to compute.
nstatesNumber of active states on which all computations and estimations are done
nstates_obsobservation_probabilitiesreturns the output probability matrix
piThe stationary distribution on the MSM states
reversibleReturns whether the MSM is reversible
sparseReturns whether the MSM is sparse
stationary_distributionThe stationary distribution on the MSM states
stationary_distribution_obstimestep_modelPhysical time corresponding to one transition matrix step, e.g.
transition_matrixThe transition matrix on the active set.