PyEMMA
1.2.2
  • Installation
  • Runtime Configuration
  • PyEMMA API
  • IPython Notebook Tutorials
    • Pentapeptide
      • Markov state model for pentapeptide
      • TICA and clustering
      • Implied timescales
      • Estimate MSM
      • PCCA
    • BPTI
      • Markov state model for BPTI
  • Changelog
  • Developer’s Guide
 
PyEMMA
  • Docs »
  • IPython Notebook Tutorials
  • View page source

IPython Notebook Tutorials¶

These IPython (http://ipython.org) notebooks show the usage of the PyEMMA API in action and also describe the workflow of Markov model building.

Pentapeptide¶

  • Markov state model for pentapeptide
    • Load pentapeptide coordinates and select features
  • TICA and clustering
  • Implied timescales
  • Estimate MSM
  • PCCA

BPTI¶

  • Markov state model for BPTI
    • BPTI 1 ms trajectory - load data
    • time-lagged independent component analysis (TICA)
    • Clustering the data
    • Let’s play
    • 1) Different clustering methods
    • 2) PCA vs TICA
    • 3) Do everything in memory
    • 4) Do everything as a pipeline
    • 5) Striding
    • 6) Different coordinates
    • MSM estimation
    • MSM
    • Spectral analysis
    • MSM trajectory
    • Representative Structures
    • Experimental observables
    • Transition pathways and Committors
    • References
Next Previous

© Copyright 2015, CMB-group. Last updated on Aug 31, 2015.

Built with Sphinx using a theme provided by Read the Docs.
Versions