PyEMMA
1.2.1
  • Installation
  • Runtime Configuration
  • PyEMMA API
  • IPython Notebook Tutorials
    • MSM estimation and validation
      • MSM Estimation
      • MSM-analysis for alanine-dipeptide
      • Implied timescales notebook
      • Fingerprint analysis for alanine-dipeptide
      • Transition path analysis for alanine-dipeptide
  • Changelog
  • Developer’s Guide
 
PyEMMA
  • Docs »
  • IPython Notebook Tutorials
  • View page source

IPython Notebook Tutorials¶

These IPython (http://ipython.org) notebooks show the usage of the PyEMMA API in action and also describe the workflow of Markov model building.

MSM estimation and validation¶

  • MSM Estimation
    • IO
    • Trajectory generation
    • Estimation
    • Implied timescales
    • Example: Double-well potential
  • MSM-analysis for alanine-dipeptide
    • Use ipythons magic % commands to activate plotting within notebook cells
    • Imports are ordered as
    • Load necessary input data
    • Eigenvectors
    • Eigenvalues
    • Implied time scales
    • PCCA
    • Summary
  • Implied timescales notebook
    • Helper functions
    • Example: Double-well potential
    • Test
  • Fingerprint analysis for alanine-dipeptide
    • Use ipythons magic % commands to activate plotting within notebook cells
    • Imports are ordered as
    • Load necessary input data
    • Metastable sets
    • Observables
    • Initial distribution
    • Fingerprint relaxation
  • Transition path analysis for alanine-dipeptide
    • Metastable sets
    • Easy computation of transition paths between sets
Next Previous

© Copyright 2015, CMB-group. Last updated on Aug 31, 2015.

Built with Sphinx using a theme provided by Read the Docs.
Versions