estimation - MSM estimation from data (pyemma.msm.estimation)¶
Countmatrix¶
count_matrix(dtraj, lag[, sliding, ...]) |
Generate a count matrix from given microstate trajectory. |
cmatrix(dtraj, lag[, sliding, ...]) |
Generate a count matrix from given microstate trajectory. |
Connectivity¶
connected_sets(C[, directed]) |
Compute connected sets of microstates. |
largest_connected_set(C[, directed]) |
Largest connected component for a directed graph with edge-weights given by the count matrix. |
largest_connected_submatrix(C[, directed, lcc]) |
Compute the count matrix on the largest connected set. |
connected_cmatrix(C[, directed, lcc]) |
Compute the count matrix on the largest connected set. |
is_connected(C[, directed]) |
Check connectivity of the given matrix. |
Estimation¶
transition_matrix(C[, reversible, mu]) |
Estimate the transition matrix from the given countmatrix. |
tmatrix(C[, reversible, mu]) |
Estimate the transition matrix from the given countmatrix. |
log_likelihood(C, T) |
Log-likelihood of the count matrix given a transition matrix. |
tmatrix_cov(C[, k]) |
Covariance tensor for non-reversible transition matrix posterior. |
error_perturbation(C, S) |
Error perturbation for given sensitivity matrix. |
Sampling¶
tmatrix_sampler(C[, reversible, mu, T0]) |
Generate transition matrix sampler object. |
Bootstrap¶
bootstrap_counts(dtrajs, lagtime) |
Generates a randomly resampled count matrix given the input coordinates. |
bootstrap_trajectories(trajs, correlation_length) |
Generates a randomly resampled trajectory segments. |
Priors¶
prior_neighbor(C[, alpha]) |
Neighbor prior for the given count matrix. |
prior_const(C[, alpha]) |
Constant prior for given count matrix. |
prior_rev(C[, alpha]) |
Prior counts for sampling of reversible transition matrices. |