pyemma.coordinates.transform.VAMPModel¶
-
class
pyemma.coordinates.transform.VAMPModel(*args, **kwargs)¶ -
__init__(mean_0=None, mean_t=None, C00=None, Ctt=None, C0t=None, dim=None, epsilon=1e-06, scaling=None)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
_SerializableMixIn__interpolate(state, klass)__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__getstate__()__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__([mean_0, mean_t, C00, Ctt, C0t, …])Initialize self.
__init_subclass__(*args, **kwargs)This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__my_getstate__()__my_setstate__(state)__ne__(value, /)Return self!=value.
__new__(cls, *args, **kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__setstate__(state)__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_cumvar(singular_values)_diagonalize()Performs SVD on covariance matrices and save left, right singular vectors and values in the model.
_dimension(rank0, rankt, dim, singular_values)output dimension
_get_classes_to_inspect()gets classes self derives from which 1.
_get_interpolation_map(cls)_get_model_param_names()Get parameter names for the model
_get_private_field(cls, name[, default])_get_serialize_fields(cls)_get_state_of_serializeable_fields(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version(cls[, require])_get_version_for_class_from_state(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_set_state_from_serializeable_fields_and_state(…)set only fields from state, which are present in klass.__serialize_fields
dimension()output dimension
expectation(observables, statistics[, …])Compute future expectation of observable or covariance using the approximated Koopman operator.
get_model_params([deep])Get parameters for this model.
load(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
score([test_model, score_method])Compute the VAMP score for this model or the cross-validation score between self and a second model.
set_model_params(mean_0, mean_t, C00, Ctt, …)update_model_params(**params)Update given model parameter if they are set to specific values
Attributes
C00C0tCttUTranformation matrix that represents the linear map from mean-free feature space to the space of left singular functions.
VTranformation matrix that represents the linear map from mean-free feature space to the space of right singular functions.
_SerializableMixIn__serialize_fields_SerializableMixIn__serialize_modifications_map_SerializableMixIn__serialize_version_VAMPModel__serialize_fields_VAMPModel__serialize_version__dict____doc____module____weakref__list of weak references to the object (if defined)
_save_data_producercumvarcumulative kinetic variance
scalingScaling of projection.
singular_valuesThe singular values of the half-weighted Koopman matrix
-