pyemma.coordinates.transform.VAMPChapmanKolmogorovValidator¶
-
class
pyemma.coordinates.transform.VAMPChapmanKolmogorovValidator(*args, **kwargs)¶ -
__init__(test_model, test_estimator, observables, statistics, observables_mean_free, statistics_mean_free, mlags=10, n_jobs=None, show_progress=True)¶ Note
It is recommended that you create this object by calling the cktest method of a VAMP object created with
vamp.- Parameters
test_model (Model) – Model with the smallest lag time. Is used to make predictions for larger lag times.
test_estimator (Estimator) – Parametrized Estimator that has produced the model. Is used as a prototype for estimating models at higher lag times.
observables (np.ndarray((input_dimension, n_observables))) – Coefficients that express one or multiple observables in the basis of the input features.
statistics (np.ndarray((input_dimension, n_statistics))) – Coefficients that express one or multiple statistics in the basis of the input features.
observables_mean_free (bool, default=False) – If true, coefficients in observables refer to the input features with feature means removed. If false, coefficients in observables refer to the unmodified input features.
statistics_mean_free (bool, default=False) – If true, coefficients in
statisticsrefer to the input features with feature means removed. If false, coefficients instatisticsrefer to the unmodified input features.mlags (int or int-array, default=10) – multiples of lag times for testing the Model, e.g. range(10). A single int will trigger a range, i.e. mlags=10 maps to mlags=range(10). Note that you need to be able to do a model prediction for each of these lag time multiples, e.g. the value 0 only make sense if model.expectation(lag_multiple=0) will work.
n_jobs (int, default=None) – how many jobs to use during calculation
show_progress (bool, default=True) – Show progressbars for calculation?
Notes
The object can be plotted with
plot_cktestwith the option y01=False.
Methods
_Loggable__create_logger()_ProgressReporterMixin__check_stage_registered(stage)_SerializableMixIn__interpolate(state, klass)__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__getstate__()__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__(test_model, test_estimator, …[, …])__init_subclass__(*args, **kwargs)This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__my_getstate__()__my_setstate__(state)__ne__(value, /)Return self!=value.
__new__(cls, *args, **kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__setstate__(state)__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_check_estimated()_cleanup_logger(logger_id, logger_name)_compute_observables(model, estimator[, mlag])Compute observables for given model
_compute_observables_conf(model, estimator)Compute confidence interval for observables for given model
_estimate(data)_get_classes_to_inspect()gets classes self derives from which 1.
_get_interpolation_map(cls)_get_param_names()Get parameter names for the estimator
_get_private_field(cls, name[, default])_get_serialize_fields(cls)_get_state_of_serializeable_fields(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version(cls[, require])_get_version_for_class_from_state(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_logger_is_active(level)@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)
_progress_context([stage])- param stage
_progress_force_finish([stage, description])forcefully finish the progress for given stage
_progress_register(amount_of_work[, …])Registers a progress which can be reported/displayed via a progress bar.
_progress_set_description(stage, description)set description of an already existing progress
_progress_update(numerator_increment[, …])Updates the progress.
_set_state_from_serializeable_fields_and_state(…)set only fields from state, which are present in klass.__serialize_fields
estimate(X, **params)Estimates the model given the data X
fit(X[, y])Estimates parameters - for compatibility with sklearn.
get_params([deep])Get parameters for this estimator.
load(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_params(**params)Set the parameters of this estimator.
Attributes
_Estimator__serialize_fields_LaggedModelValidator__serialize_fields_LaggedModelValidator__serialize_modifications_map_LaggedModelValidator__serialize_version_Loggable__ids_Loggable__refs_SerializableMixIn__serialize_fields_SerializableMixIn__serialize_modifications_map_SerializableMixIn__serialize_version_VAMPChapmanKolmogorovValidator__serialize_fields_VAMPChapmanKolmogorovValidator__serialize_version__dict____doc____module____weakref__list of weak references to the object (if defined)
_estimated_loglevel_CRITICAL_loglevel_DEBUG_loglevel_ERROR_loglevel_INFO_loglevel_WARN_pg_threshold_prog_rep_callbacks_prog_rep_descriptions_prog_rep_progressbars_progress_num_registered_progress_registered_stages_save_data_producerestimatesReturns estimates at different lagtimes
estimates_confReturns the confidence intervals of the estimates at different lagtimes (if available).
lagtimesloggerThe logger for this class instance
modelThe model estimated by this Estimator
n_jobsReturns number of jobs/threads to use during assignment of data.
nameThe name of this instance
predictionsReturns tested model predictions at different lagtimes
predictions_confReturns the confidence intervals of the estimates at different lagtimes (if available)
show_progresswhether to show the progress of heavy calculations on this object.
statistics-