pyemma.coordinates.transform.VAMPChapmanKolmogorovValidator¶
-
class
pyemma.coordinates.transform.VAMPChapmanKolmogorovValidator(model, estimator, observables, statistics, observables_mean_free, statistics_mean_free, mlags=10, n_jobs=1, show_progress=True)¶ -
__init__(model, estimator, observables, statistics, observables_mean_free, statistics_mean_free, mlags=10, n_jobs=1, show_progress=True)¶ Note
It is recommended that you create this object by calling the cktest method of a VAMP object created with
vamp.Parameters: - model (Model) – Model with the smallest lag time. Is used to make predictions for larger lag times.
- estimator (Estimator) – Parametrized Estimator that has produced the model. Is used as a prototype for estimating models at higher lag times.
- observables (np.ndarray((input_dimension, n_observables))) – Coefficients that express one or multiple observables in the basis of the input features.
- statistics (np.ndarray((input_dimension, n_statistics))) – Coefficients that express one or multiple statistics in the basis of the input features.
- observables_mean_free (bool, default=False) – If true, coefficients in observables refer to the input features with feature means removed. If false, coefficients in observables refer to the unmodified input features.
- statistics_mean_free (bool, default=False) – If true, coefficients in
statisticsrefer to the input features with feature means removed. If false, coefficients instatisticsrefer to the unmodified input features. - mlags (int or int-array, default=10) – multiples of lag times for testing the Model, e.g. range(10). A single int will trigger a range, i.e. mlags=10 maps to mlags=range(10). Note that you need to be able to do a model prediction for each of these lag time multiples, e.g. the value 0 only make sense if model.expectation(lag_multiple=0) will work.
- n_jobs (int, default=1) – how many jobs to use during calculation
- show_progress (bool, default=True) – Show progressbars for calculation?
Notes
The object can be plotted with
plot_cktestwith the option y01=False.
Methods
__init__(model, estimator, observables, …)estimate(X, **params)Estimates the model given the data X fit(X[, y])Estimates parameters - for compatibility with sklearn. get_params([deep])Get parameters for this estimator. load(file_name[, model_name])loads a previously saved object of this class from a file. save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name. set_params(**params)Set the parameters of this estimator. -
estimate(X, **params)¶ Estimates the model given the data X
Parameters: - X (object) – A reference to the data from which the model will be estimated
- params (dict) – New estimation parameter values. The parameters must that have been announced in the __init__ method of this estimator. The present settings will overwrite the settings of parameters given in the __init__ method, i.e. the parameter values after this call will be those that have been used for this estimation. Use this option if only one or a few parameters change with respect to the __init__ settings for this run, and if you don’t need to remember the original settings of these changed parameters.
Returns: estimator – The estimated estimator with the model being available.
Return type: object
-
estimates¶ Returns estimates at different lagtimes
Returns: Y – each row contains the n observables computed at one of the T lag t imes. Return type: ndarray(T, n)
-
estimates_conf¶ Returns the confidence intervals of the estimates at different lagtimes (if available).
If not available, returns None.
Returns: - L (ndarray(T, n)) – each row contains the lower confidence bound of n observables computed at one of the T lag times.
- R (ndarray(T, n)) – each row contains the upper confidence bound of n observables computed at one of the T lag times.
-
fit(X, y=None)¶ Estimates parameters - for compatibility with sklearn.
Parameters: X (object) – A reference to the data from which the model will be estimated Returns: estimator – The estimator (self) with estimated model. Return type: object
-
get_params(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
load(file_name, model_name='default')¶ loads a previously saved object of this class from a file.
Parameters: - file_name (str or file like object (has to provide read method)) – The file like object tried to be read for a serialized object.
- model_name (str, default='default') – if multiple models are contained in the file, these can be accessed by
their name. Use func:
pyemma.list_modelsto get a representation of all stored models.
Returns: obj
Return type: the de-serialized object
-
logger¶ The logger for this class instance
-
model¶ The model estimated by this Estimator
-
name¶ The name of this instance
-
predictions¶ Returns tested model predictions at different lagtimes
Returns: Y – each row contains the n observables predicted at one of the T lag times by the tested model. Return type: ndarray(T, n)
-
predictions_conf¶ Returns the confidence intervals of the estimates at different lagtimes (if available)
If not available, returns None.
Returns: - L (ndarray(T, n)) – each row contains the lower confidence bound of n observables computed at one of the T lag times.
- R (ndarray(T, n)) – each row contains the upper confidence bound of n observables computed at one of the T lag times.
-
save(file_name, model_name='default', overwrite=False, save_streaming_chain=False)¶ saves the current state of this object to given file and name.
Parameters: - file_name (str) – path to desired output file
- model_name (str, default='default') – creates a group named ‘model_name’ in the given file, which will contain all of the data. If the name already exists, and overwrite is False (default) will raise a RuntimeError.
- overwrite (bool, default=False) – Should overwrite existing model names?
- save_streaming_chain (boolean, default=False) – if True, the data_producer(s) of this object will also be saved in the given file.
Examples
>>> import pyemma, numpy as np >>> from pyemma.util.contexts import named_temporary_file >>> m = pyemma.msm.MSM(P=np.array([[0.1, 0.9], [0.9, 0.1]]))
>>> with named_temporary_file() as file: ... m.save(file, 'simple') ... inst_restored = pyemma.load(file, 'simple') >>> np.testing.assert_equal(m.P, inst_restored.P)
-
set_params(**params)¶ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object. :returns: :rtype: self
-
show_progress¶ whether to show the progress of heavy calculations on this object.
-