pyemma.coordinates.estimation.covariance.LaggedCovariance¶
-
class
pyemma.coordinates.estimation.covariance.LaggedCovariance(c00=True, c0t=False, ctt=False, remove_constant_mean=None, remove_data_mean=False, reversible=False, bessel=True, sparse_mode='auto', modify_data=False, lag=0, weights=None, stride=1, skip=0, chunksize=NotImplemented, ncov_max=inf)¶ -
__init__(c00=True, c0t=False, ctt=False, remove_constant_mean=None, remove_data_mean=False, reversible=False, bessel=True, sparse_mode='auto', modify_data=False, lag=0, weights=None, stride=1, skip=0, chunksize=NotImplemented, ncov_max=inf)¶
Methods
__init__([c00, c0t, ctt, …])estimate(X[, chunksize])fit(X[, y])Estimates parameters - for compatibility with sklearn. get_params([deep])Get parameters for this estimator. load(file_name[, model_name])loads a previously saved object of this class from a file. partial_fit(X)incrementally update the estimates save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name. set_params(**params)Set the parameters of this estimator. -
C00_¶ Instantaneous covariance matrix
-
C0t_¶ Time-lagged covariance matrix
-
Ctt_¶ Covariance matrix of the time shifted data
-
fit(X, y=None)¶ Estimates parameters - for compatibility with sklearn.
Parameters: X (object) – A reference to the data from which the model will be estimated Returns: estimator – The estimator (self) with estimated model. Return type: object
-
get_params(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
load(file_name, model_name='default')¶ loads a previously saved object of this class from a file.
Parameters: - file_name (str or file like object (has to provide read method)) – The file like object tried to be read for a serialized object.
- model_name (str, default='default') – if multiple models are contained in the file, these can be accessed by
their name. Use func:
pyemma.list_modelsto get a representation of all stored models.
Returns: obj
Return type: the de-serialized object
-
logger¶ The logger for this class instance
-
model¶ The model estimated by this Estimator
-
name¶ The name of this instance
-
partial_fit(X)¶ incrementally update the estimates
Parameters: X (array, list of arrays, PyEMMA reader) – input data.
-
save(file_name, model_name='default', overwrite=False, save_streaming_chain=False)¶ saves the current state of this object to given file and name.
Parameters: - file_name (str) – path to desired output file
- model_name (str, default='default') – creates a group named ‘model_name’ in the given file, which will contain all of the data. If the name already exists, and overwrite is False (default) will raise a RuntimeError.
- overwrite (bool, default=False) – Should overwrite existing model names?
- save_streaming_chain (boolean, default=False) – if True, the data_producer(s) of this object will also be saved in the given file.
Examples
>>> import pyemma, numpy as np >>> from pyemma.util.contexts import named_temporary_file >>> m = pyemma.msm.MSM(P=np.array([[0.1, 0.9], [0.9, 0.1]]))
>>> with named_temporary_file() as file: ... m.save(file, 'simple') ... inst_restored = pyemma.load(file, 'simple') >>> np.testing.assert_equal(m.P, inst_restored.P)
-
set_params(**params)¶ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object. :returns: :rtype: self
-