pyemma.thermo.StationaryModel¶
-
class
pyemma.thermo.StationaryModel(*args, **kwargs)¶ StationaryModel combines a stationary vector with discrete-state free energies.
-
__init__(pi=None, f=None, normalize_energy=True, label='ground state')¶ StationaryModel combines a stationary vector with discrete-state free energies.
- Parameters
pi (ndarray(n)) – Stationary distribution. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). The free energies f will be computed from pi via \(f_i = - \log(\pi_i)\). Only if normalize_f is True, a constant will be added to ensure consistency with \(\sum_i \pi_i = 1\).
f (ndarray(n)) – Discrete-state free energies. If normalized_f = True, a constant will be added to normalize the stationary distribution. Otherwise f is left as given. If both (pi and f) are given, f takes precedence.
normalize_energy (bool, default=True) – If parametrized by free energy f, normalize them such that \(\sum_i \pi_i = 1\), which is achieved by \(\log \sum_i \exp(-f_i) = 0\).
label (str, default='ground state') – Human-readable description for the thermodynamic state of this model. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’ or ‘Umbrella 1’
Methods
_SerializableMixIn__interpolate(state, klass)__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(other)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__getstate__()__gt__(value, /)Return self>value.
__init__([pi, f, normalize_energy, label])StationaryModel combines a stationary vector with discrete-state free energies.
__init_subclass__(*args, **kwargs)This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__my_getstate__()__my_setstate__(state)__ne__(value, /)Return self!=value.
__new__(cls, *args, **kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__setstate__(state)__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_get_classes_to_inspect()gets classes self derives from which 1.
_get_interpolation_map(cls)_get_model_param_names()Get parameter names for the model
_get_private_field(cls, name[, default])_get_serialize_fields(cls)_get_state_of_serializeable_fields(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version(cls[, require])_get_version_for_class_from_state(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_set_state_from_serializeable_fields_and_state(…)set only fields from state, which are present in klass.__serialize_fields
expectation(a)Equilibrium expectation value of a given observable.
get_model_params([deep])Get parameters for this model.
load(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_model_params([pi, f, normalize_f, label])Call to set all basic model parameters.
update_model_params(**params)Update given model parameter if they are set to specific values
Attributes
_SerializableMixIn__serialize_fields_SerializableMixIn__serialize_modifications_map_SerializableMixIn__serialize_version_StationaryModel__serialize_version_SubSet__serialize_fields_SubSet__serialize_version__dict____doc____hash____module____weakref__list of weak references to the object (if defined)
_save_data_produceractive_setThe active set of states on which all computations and estimations will be done.
fThe free energies (in units of kT) on the configuration states.
f_full_statefree_energiesThe free energies (in units of kT) on the configuration states.
free_energies_full_statelabelHuman-readable description for the thermodynamic state of this model.
nstatesNumber of active states on which all computations and estimations are done.
nstates_fullSize of the full set of states.
piThe stationary distribution on the configuration states.
pi_full_statestationary_distributionThe stationary distribution on the configuration states.
stationary_distribution_full_state-