pyemma.plots.NetworkPlot¶
-
class
pyemma.plots.NetworkPlot(A, pos=None, xpos=None, ypos=None, ax=None)¶ Plot of network with nodes and arcs
-
__init__(A, pos=None, xpos=None, ypos=None, ax=None)¶ - Parameters
A (ndarray(n,n)) – weight matrix or adjacency matrix of the network to visualize
pos (ndarray(n,2)) – user-defined positions
xpos (ndarray(n,)) – user-defined x-positions
ypos (ndarray(n,)) – user-defined y-positions
ax (matplotlib Axes object, optional, default=None) – The axes to plot to. When set to None a new Axes (and Figure) object will be used.
Examples
We define first define a reactive flux by taking the following transition matrix and computing TPT from state 2 to 3.
>>> import numpy as np >>> P = np.array([[0.8, 0.15, 0.05, 0.0, 0.0], ... [0.1, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.1, 0.8, 0.0, 0.05], ... [0.0, 0.2, 0.0, 0.8, 0.0], ... [0.0, 0.02, 0.02, 0.0, 0.96]]) >>> from pyemma import msm >>> F = msm.tpt(msm.markov_model(P), [2], [3])
now plot the gross flux >>> NetworkPlot(F.gross_flux).plot_network() # doctest: +ELLIPSIS <…Figure…
Methods
__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__(A[, pos, xpos, ypos, ax])- param A
weight matrix or adjacency matrix of the network to visualize
__init_subclass__This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__ne__(value, /)Return self!=value.
__new__(**kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_draw_arrow(x1, y1, x2, y2, Dx, Dy[, label, …])Draws a slightly curved arrow from (x1,y1) to (x2,y2).
_find_best_positions(G)Finds best positions for the given graph (given as adjacency matrix) nodes by minimizing a network potential.
layout_automatic()plot_network([state_sizes, state_scale, …])Draws a network using discs and curved arrows.
Attributes
__dict____doc____module____weakref__list of weak references to the object (if defined)
-