pyemma.coordinates.estimation.covariance.LaggedCovariance¶
-
class
pyemma.coordinates.estimation.covariance.LaggedCovariance(*args, **kwargs)¶ -
__init__(c00=True, c0t=False, ctt=False, remove_constant_mean=None, remove_data_mean=False, reversible=False, bessel=True, sparse_mode='auto', modify_data=False, lag=0, weights=None, stride=1, skip=0, chunksize=NotImplemented, ncov_max=inf, column_selection=None, diag_only=False)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
_Loggable__create_logger()_SerializableMixIn__interpolate(state, klass)__delattr__(name, /)Implement delattr(self, name).
__dir__()Default dir() implementation.
__eq__(value, /)Return self==value.
__format__(format_spec, /)Default object formatter.
__ge__(value, /)Return self>=value.
__getattribute__(name, /)Return getattr(self, name).
__getstate__()__gt__(value, /)Return self>value.
__hash__()Return hash(self).
__init__([c00, c0t, ctt, …])Initialize self.
__init_subclass__(*args, **kwargs)This method is called when a class is subclassed.
__le__(value, /)Return self<=value.
__lt__(value, /)Return self<value.
__my_getstate__()__my_setstate__(state)__ne__(value, /)Return self!=value.
__new__(cls, *args, **kwargs)Create and return a new object.
__reduce__()Helper for pickle.
__reduce_ex__(protocol, /)Helper for pickle.
__repr__()Return repr(self).
__setattr__(name, value, /)Implement setattr(self, name, value).
__setstate__(state)__sizeof__()Size of object in memory, in bytes.
__str__()Return str(self).
__subclasshook__Abstract classes can override this to customize issubclass().
_check_estimated()_cleanup_logger(logger_id, logger_name)_estimate(iterable[, partial_fit])_get_classes_to_inspect()gets classes self derives from which 1.
_get_interpolation_map(cls)_get_param_names()Get parameter names for the estimator
_get_private_field(cls, name[, default])_get_serialize_fields(cls)_get_state_of_serializeable_fields(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version(cls[, require])_get_version_for_class_from_state(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_init_covar(partial_fit, n_chunks)_logger_is_active(level)@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)
_set_state_from_serializeable_fields_and_state(…)set only fields from state, which are present in klass.__serialize_fields
estimate(X[, chunksize])Estimates the model given the data X
fit(X[, y])Estimates parameters - for compatibility with sklearn.
get_params([deep])Get parameters for this estimator.
load(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
partial_fit(X)incrementally update the estimates
save(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_params(**params)Set the parameters of this estimator.
Attributes
C00_Instantaneous covariance matrix
C0t_Time-lagged covariance matrix
Ctt_Covariance matrix of the time shifted data
_Estimator__serialize_fields_LaggedCovariance__serialize_fields_LaggedCovariance__serialize_version_Loggable__ids_Loggable__refs_SerializableMixIn__serialize_fields_SerializableMixIn__serialize_modifications_map_SerializableMixIn__serialize_version__dict____doc____module____weakref__list of weak references to the object (if defined)
_estimated_loglevel_CRITICAL_loglevel_DEBUG_loglevel_ERROR_loglevel_INFO_loglevel_WARN_save_data_producercolumn_selectioncovcov_tauloggerThe logger for this class instance
meanmean_taumodelThe model estimated by this Estimator
nameThe name of this instance
nsaveweights-